

Industrialize Additive Manufacturing Design and print useful parts at scale

Unrestricted © Siemens AG 2020

History of Atlas 3D and Siemens Acquisition

SIEMENS Ingenuity for life

Initial product and company was 2015 National Winner of \$1.6M Grant from America Makes Project #4047

Atlas 3D spun-out April 2017 in Plymouth, Indiana to Commercialize Software

Mission: To take the "Black Art" out of metal additive printing, by providing answers to the critical questions surrounding orientation and support structure generation, for successful first time prints . . . Every time!

Software Known as Sunata[™], Launched November 2017

Atlas 3D acquired by Siemens in November 2019

Conventional thinking

Disadvantages:

Complex supply system High manufacturing cost Long lead time Complex assembly Costly maintenance, repair Excessive size Many parts, flanges, welds Nested, ring-shaped fluid channels

Conventional burner design Complexity **Burner tip** Total length L = 3.4 m

Inspiration

Simulation-driven generative design

Computational fluid dynamics (STAR-CCM+)

Design space exploration (HEEDS)

Unrestricted © Siemens 2020

Result: Reimagined system

AM Thinking: Vast improvement opportunities in every area of design, manufacturing and business

Product:
Simplified, standardized mounting assembly Reduced size
Reduced mounting effort
Manufacturing:
Reduced lead time, faster assembly

Reduced parts by over 50% Reduced welds by approx. 50% Reduced assembly complexity, steps

Business:

Accelerated speed to market Adjustable design for customer-specific combustion requirements Simplified repair

Page 7

Additive Manufacturing is driving Innovation: Incremental progress isn't competitive enough

Reimagine products Shift from conventional design to innovative DFAM Reduce weight, material Scan-to-product Expand performance Accelerate innovation cycles Product transformation **STATUS QUO**

Rethink business

- Individualization, personalization
- Zero inventory on demand printing
- Design anywhere. Print anywhere.
- Increase competitiveness

Reinvent manufacturing

- Eliminate molding/castings/tooling
- Eliminate/simplify assembly process
- Reduce supply chains
- Affordable low volume production

Manufacturing transformation

Shift from prototyping / experimentation to mainstream industrial production

Economics drives the adoption of Additive Manufacturing

Unrestricted © Siemens 2020

CUSTOMER CHALLENGES

ACROSS THE DIGITAL ENTERPRISE

SIEMENS XCELERATOR AM VISION

Additive Manufacturing Network

SIEMENS INDUSTRIAL ADDITIVE MANUFACTURING SOLUTION

toolcraft

CHALLENGE

Streamline the process for optimizing a customer mold tool using additive manufacturing.

SOLUTION Work in one environment for AM process, from design and validation, through build prep and simulation, to traceability.

Siemens is industrializing additive manufacturing

End-to-end industrialized additive

"Siemens is providing us with the most complete, fully associative end-to-end process chain from design to 3D printing of parts including finishing and quality assurance allowing us to transform Additive Manufacturing into an industrial production technology."

Christoph Hauck CEO of MBFZ toolcraft GmbH

Siemens End-to-End Additive Manufacturing Solutions

Thank you.

Unrestricted © Siemens AG 2018

Use Case: Scan-to-part for additive manufacturing

Utilize scans of physical objects to engineer and 3D print individualized products

Value:

- Personalize products
- Economically produce lot sizes of one part
- Expedite reverse engineering of parts

Key capabilities:

- Convergent ModelingTM standard CAD tools work with mixed facet and precise geometry
- Linked, smart model-driven process from scan to printed part

Industries: medical, aerospace, heavy equipment, industrial machinery, energy

Use Case: Lightweighting with bionic / organic designs

Generate lighter weight and stronger parts with topology optimization

Value:

- Reduce product weight, material
- Maximize strength
- Automatically generate optimized shapes suitable for 3D printing

- Convergent Modeling[™] standard CAD tools work with mixed facet and precise geometry
- Integrated generative design, topology optimization eliminates data conversion / transfer
- Integrated design rules for 3D printing
- Linked process from concept to print

Use Case: Eliminate castings and forgings

Produce parts using 3D printing instead of with castings

Value:

- Make parts in weeks instead of months
- Produce parts with complex internal geometry for greater performance
- Economically produce small lot sizes
- Accelerate innovation cycles

- Linked process from design to print eliminates data conversion, enables associativity
- Integrated print preparation and post-print finishing in NX
- Ability to drive multi-axis FDM and fixed-axis DED printing technologies with one system

Use case: Automate composite lay-up [technology demonstrator / future vision]

Produce large scale production and composite parts using robots

Value:

- Automate production to make parts in days instead of months
- Eliminate part size constraints
- Lightweight parts
- Economically produce small lot sizes

- Multi-axis programming and control for FDM
- Siemens Sinumerik controlled multi-axis robot
- Integrated and linked process from design to print – all in NX

Use Case: Consolidate parts and eliminate injection mold tooling

Produce plastic parts using 3D printing instead of mold tooling for low / mid-level production volumes

Value:

- Consolidate parts, increase complexity
- Make parts in days instead of weeks, economically product small lot sizes
- Accelerate market penetration

- Convergent ModelingTM standard CAD tools work with mixed facet and precise geometry
- Linked process from design to print eliminates data conversion, enables associativity
- Integrated print preparation (powered by Materialise) for HP Multi Jet Fusion
- 3D nesting for optimally packed build volume

Reshaping the business of power generation

CHALLENGE

Use 3D printing to improve efficiency of its own 3D printers to prove the viability of MJF for production.

SOLUTION Leverage entire digital thread for AM design, simulation, 3D printing & performance analytics of HP cooling duct.

34.3%

22.3%

75.0%

PART COST

REDUCTION

FLOW CONTROL

IMPROVEMENT

DEVELOPMENT

FASTER

Industrializing Additive Manufacturing requires a change in mindset and digitalization